66 research outputs found

    Ionospheric Doppler measurements by means of HF-radar techniques

    Get PDF
    Studies of the dynamics of the ionosphere and its related phenomena are mainly based on Doppler Drift measurements. The time variation (ionisation/recombination) of plasma density, thermospheric wind and others can be observed by means of HF-radars. The technique of Doppler Drift measurements is a quite complex technique that is now affordable by means of an advanced ionospheric sounder. The combination of vertical sounding and interferometric Doppler detection discloses the Doppler sources. The echo signal contains the Doppler shift in frequency imposed on the wave carrier by each point source where the signal is reflected. Other phenomena like environmental noise and the intrinsic error of the measurements that, together with the change in time of the refractive index, affect the measurements in various ways impeding to better quantify the results

    Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations

    Get PDF
    Electron density profiles (EDPs) derived from GNSS radio occultation (RO) measurements provide valuable information on the vertical electron density structure of the ionosphere and, among others, allow the extraction of key parameters such as the maximum electron density NmF2 and the corresponding peak height hmF2 of the F2 layer. An efficient electron density retrieval method, developed at the UPC (Barcelona, Spain), has been applied in this work to assess the accuracy of NmF2and hmF2 as determined from Formosat-3/COSMIC (F-3/C) radio occultation measurements for a period of more than half a solar cycle between 2006 and 2014. Ionosonde measurements of the Space Physics Interactive Data Resource (SPIDR) network serve as a reference. Investigations on the global trend as well as comparisons of the F2 layer electron density peaks derived from both occultations and ionosonde measurements are carried out. The studies are performed in the global domain and with the distinction of different latitude sectors around the magnetic equator ±[0°, 20°], ±]20°, 60°] and ±]60°, 90°]) and local times (LT) accounting for different ionospheric conditions at night (02:00 LT ± 2 h), dawn (08:00 LT ± 2 h), and day (14:00 LT ± 2 h). The mean differences of F2 layer electron density peaks observed by F-3/C and ionosondes are found to be insignificant. Relative variations of the peak differences are determined in the range of 22%–30% for NmF2 and 10%–15% for hmF2. The consistency of observations is generally high for the equatorial and mid-latitude sectors at daytime and dawn whereas degradations have been detected in the polar regions and during night. It is shown, that the global averages of NmF2 and hmF2 derived from F-3/C occultations appear as excellent indicators for the solar activity.JRC.G.5-Security technology assessmen

    Feasibility of precise navigation in high and low latitude regions under scintillation conditions

    Get PDF
    Scintillation is one of the most challenging problems in Global Navigation Satellite Systems (GNSS) navigation. This phenomenon appears when the radio signal passes through ionospheric irregularities. These irregularities represent rapid changes on the refraction index and, depending on their size, they can produce also diffractive effects affecting the signal amplitude and, eventually producing cycle slips. In this work, we show that the scintillation effects on the GNSS signal are quite different in low and high latitudes. For low latitude receivers, the main effects, from the point of view of precise navigation, are the increase of the carrier phase noise (measured by s¿) and the fade on the signal intensity (measured by S4) that can produce cycle slips in the GNSS signal. With several examples, we show that the detection of these cycle slips is the most challenging problem for precise navigation, in such a way that, if these cycle slips are detected, precise navigation can be achieved in these regions under scintillation conditions. For high-latitude receivers the situation differs. In this region the size of the irregularities is typically larger than the Fresnel length, so the main effects are related with the fast change on the refractive index associated to the fast movement of the irregularities (which can reach velocities up to several km/s). Consequently, the main effect on the GNSS signals is a fast fluctuation of the carrier phase (large s¿), but with a moderate fade in the amplitude (moderate S4). Therefore, as shown through several examples, fluctuations at high-latitude usually do not produce cycle slips, being the effect quite limited on the ionosphere-free combination and, in general, precise navigation can be achieved also during strong scintillation conditions.Postprint (published version

    Remote Sensing and Skywave Digital Communication from Antarctica

    Get PDF
    This paper presents an overview of the research activities undertaken by La Salle and the Ebro Observatory in the field of remote sensing. On 2003 we started a research project with two main objectives: implement a long-haul oblique ionospheric sounder and transmit the data from remote sensors located at the Spanish Antarctic station Juan Carlos I to Spain. The paper focuses on a study of feasibility of two possible physical layer candidates for the skywave link between both points. A DS-SS based solution and an OFDM based solution are considered to achieve a reliable low-power low-rate communication system between Antarctica and Spain

    A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: first results

    Get PDF
    Traveling Ionospheric Disturbances (TIDs) are wave-like propagating irregularities that alter the electron density environment and play an important role spreading radio signals propagating through the ionosphere. A method combining spectral analysis and cross-correlation is applied to time series of ionospheric characteristics (i.e., MUF(3000)F2 or foF2) using data of the networks of ionosondes in Europe and South Africa to estimate the period, amplitude, velocity and direction of propagation of TIDs. The method is verified using synthetic data and is validated through comparison of TID detection results made with independent observational techniques. The method provides near real time capability of detection and tracking of Large-Scale TIDs (LSTIDs), usually associated with auroral activity.Postprint (published version

    Report on the design and specifications of the TID algorithms and products

    Get PDF
    EU H2020 project TechTIDE deriverable, reporting on the design of the adjustments and upgrades required in order to develop the TID identification algorithms. The added value products that will result from the detection methods will be specified and designed. Each detection method developer will design a validation methodology that will lead to the definition of the confidence metrics.TechTIDE project, funded by the European Commission Horizon 2020 research and innovation program [AD-1], will establish a pre-operational system to demonstrate reliability of a set of TID (Travelling Ionospheric Disturbances) detection methodologies to issue warnings of the occurrence of TIDs over the region extended from Europe to South Africa. TechTIDE warning system will estimate the parameters that specify the TID characteristics and the inferred perturbation, with all additional geophysical information to the users to help them assess the risks and to develop mitigation techniques, tailored to their application. This document is TechTIDE D2.1 “Report on the design and specifications of the TID algorithms and products” and it is an output of TechTIDE Task 2.1 (Specifications for the TID algorithms and the resulting products) of the WP2 (TID identification methodologies) which has the final goal to release the basic algorithms for the TID identification and the value-added products for implementation in the TechTIDE warning system. The document presents the design of adjusted and upgraded TID detection codes, the design of the value-added products, and the validation plan. The design of the adjustments and the upgrades of the different methods are based on the initial requirements gathered among potential users affected by TIDs [RD-1]. Some requirements were brought in from ESA Space Situational Awareness Space Weather (SSA SWE) [RD-2] users' requirements. This way, TID algorithms and product outputs will try to adapt to assess ESA SSA SWE Service Network prerequisites.Preprin

    Near Earth space plasma monitoring under COST 296

    Get PDF
    This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296 Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time data and providing data users measurement uncertainties. These value added data also served for calibration and validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC), other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications

    Report on TID algorithms

    Get PDF
    This deliverable presents the TID detection algorithms as improved in response to design principles stated in T2.1 and their testing in the lab environment, verification against measurements taken during quiet and disturbed periods of time, benchmarking for their transition to operations, and final validation to the user requirements of accuracy, timeliness, and coverage.TechTIDE project, funded by the European Commission Horizon 2020 research and innovation program [AD-1], will establish a pre-operational system to demonstrate reliability of a set of TID (Travelling Ionospheric Disturbances) detection methodologies to issue warnings of the occurrence of TIDs over the region extending from Europe to South Africa. TechTIDE warning system will estimate the parameters that specify the TID characteristics and the inferred perturbation, with all additional geophysical information to the users to help them assess the risks and to develop mitigation techniques, tailored to their application. This document is TechTIDE D2.2 “Report on the TID algorithms” and it is an output of TechTIDE Task 2.2 (Development of the TID identification algorithms and products) of the WP2 (TID identification methodologies) which has the final goal to release the basic algorithms for the TID identification and to test a first version of the value-added products for implementation in the TechTIDE warning system. The document highlights four aspects of the TID algorithm release process, (1) Developmentbased on the concept, techniques, and algorithms as stated in TechTIDE D2.1, (2) Verification, an internal testing process that ensures algorithm correctness, (3) Benchmarkingneeded to prepare algorithms to transition to operations, and (4) Validation, an external process of ensuring that developed algorithms are compliant with the stated end user expectations.Postprint (published version
    corecore